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Numerical prediction of natural convection in a tall enclosure
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SUMMARY

The equations for natural convection �ow in a tall cavity were solved for a super-critical Rayleigh
number for which oscillations occur in the �ow �eld and various solutions are possible. The objective
was to compare various solution methods for this complex �ow situation. The equations were solved
using the �nite element method with the Galerkin form of the method of weighted residuals with
various time integration methods, time steps and grid spacings. The Euler time integration method is
unsuitable for this problem because of its excessive dissipation. Fine grid distributions and small time
steps were needed to predict accurate values of the average temperatures and velocities in the cavity,
with even �ner elements and time steps needed to accurately predict the amplitudes of the oscillations.
An initially uniform temperature distribution lead to a uniformly oscillating skew-symmetric �ow �eld.
An initially random temperature �eld lead to a symmetry-breaking �ow �eld that eventually reached
the skew-symmetric �ow �eld after a long time. Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

The natural convection �ows in tall cavities develop into various complex time-dependent
�ow �elds. This paper presents the solutions for a di�erentially heated 8:1 rectangular cav-
ity �lled with a Boussinesq �uid with Ra=340 000 and Pr=0:71. This Rayleigh number
is greater than the critical Rayleigh number where the �ow begins to oscillate. Results are
presented for two initial temperature pro�les, a uniform initial temperature �eld and a random
temperature distribution around a mean of zero. The uniform initial temperature pro�le results
in a skew-symmetric solution while the random temperature distribution initially results in a
second unstable mode which is symmetry breaking (not skew-symmetric), but which even-
tually reaches the skew-symmetric solution after a long time. Results for the uniform initial
distribution are also presented for several di�erent grid arrangements, time steps and calcula-
tional methods. The periods and amplitudes were evaluated for time periods that started after
many uniform oscillations during which the amplitudes were essentially uniform.
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PROBLEM STATEMENT

The natural convection �ow in a tall (8:1 height to width ratio) two-dimensional rectangular
cavity was analysed numerically by solving the time-dependent Navier–Stokes equations with
the energy equation using the Boussinesq approximation. The side walls had uniform temper-
atures with the left wall at T =0:5 and the right wall at T = − 0:5, while the top and bottom
were perfectly insulated. The initial conditions were that the velocities were all zero and the
temperature �eld was either uniform or a random distribution around a mean of zero. The
problem set-up is described in detail by Christon et al. [1]. All variables used in this paper
are non-dimensionalized as described by Christon et al. [1].

NUMERICAL METHOD

The problem was solved using the �nite element method with the Galerkin form of the method
of weighted residuals [2]. The transient term was modelled using either the forward=backward
Euler predictor=corrector method or the Adams–Bashforth=trapezoidal rule. The elements were
all 8-point quadrilaterals using the serendipity biquadratic interpolation functions. The algebraic
equations were solved using Newton’s method. Uniform and non-uniform grid distributions
were used with either 21× 101 nodes or 41× 201 nodes in the horizontal and vertical direc-
tions, respectively. The non-uniform distributions had nodes bunched near the walls using a
maximum (in the centre) to minimum (at the walls) element size ratio of 10 as described in
the Nachos II manual [2].
Calculations were also attempted using the �nite-di�erence technique with the SIMPLE

technique to solve the equations with the advection term modelled using the hybrid method
as implemented in PHOENICS version 1.4. However, since PHOENICS only uses single
precision variables, the numerical inaccuracies with the large number of nodes overwhelmed
the solution so that the results were obviously incorrect.
The calculations were done on a single processor 550 MHz Pentium III processor with

256 Mbytes of memory. Similar models listed in the specfp95 rating had �oating point
calculational rates of about 15.8 MFLOPs. The calculations for the 21× 401 grid required
34 s per time step and 210 Mbytes memory.

RESULTS

For the supercritical Rayleigh number of 340 000 with a Prandtl number of 0.71, the veloci-
ties and temperatures begin to oscillate uniformly after the initial transient, which lasts until
t≈ 100. The oscillation becomes fairly uniform at t≈ 400, but the amplitude of the oscilla-
tions continues to slowly grow until reaching a steady-state oscillation after t≈ 800. The �ow
for the symmetry-breaking scenario (scenario 3 in Table 1) also develops with an initial
transient until t≈ 100 followed by the oscillations slowly growing until about t≈ 1100 and
then decaying until the skew-symmetry �ow �eld appears at t≈ 2400.
Results are presented for the various scenarios in Table 1. For scenario 4, the data are for

the �ow during the symmetry-breaking period as described below. The use of the Euler time
step method always resulted in steady-state solutions due to its inherent dissipation; therefore,
the Adams–Bashforth=trapezoidal rule was used for all the results presented here.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1039–1044
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û
0.
07
00
9

0.
23
96

0.
00
00
35

3.
42

0.
23
94

0.
00
00
31

3.
43

0.
23
93

0.
00
00
4

3.
68

0.
23
93

0.
00
00
31

3.
42

!̂
3.
37
63

2.
86
87

0.
00
33

3.
42

3.
03
39

0.
00
30

3.
43

3.
03
45

0.
00
09
9

3.
68

3.
03
40

0.
00
29

3.
42

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1039–1044



1042 D. M. CHRISTOPHER

1000 1500 2000 2500 3000
-0.04

-0.02

0.00

0.02

0.04

t

Figure 1. Decay of the temperature skew between points 1 and 2 for the symmetry-breaking scenario.

The �rst scenario with fewer nodal points resulted in a steady-state solution. The second
scenario used �ner grids distributed uniformly across the domain. The third, fourth and �fth
scenarios used a non-uniform grid whose near-wall elements were about one-�fth the size of
the corresponding grids in the uniform grid in scenario 2.
The fourth scenario began with a random temperature distribution having a mean of zero

and a maximum variation of ±0:5. The random initial temperature distribution resulted in a
�ow �eld that was initially symmetry breaking with oscillations that were somewhat slower
than for the skew-symmetric scenario. However, after a long time, the �ow eventually reached
the skew-symmetric �ow �eld as shown by the variation over time of the temperature skew,
�12, plotted in Figure 1. Figure 1 shows a very large number of oscillations of the skew.
The maximum amplitude initially increased until about t=1100 and then slowly decreased
to zero. The data in Table 1 for scenario 4 are for t=1100–1173 when the amplitude was
the largest. When the �ow �eld eventually reached the skew-symmetric �ow, the parameters
were essentially the same as that for scenario 3. The average skew between the temperatures
at points 1 and 2 listed in Table 1 for scenario 4 was nearly zero over a cycle, but the values
varied considerably as shown by the amplitude of the oscillations plotted in Figure 1. The
variation of the Nusselt number on the two sides of the cavity plotted in Figure 2 also shows
how the �ow �eld transformed from the symmetry-breaking �ow �eld to the skew-symmetric
�ow �eld. The darker curve is for the cold side while the lighter dotted line is for the hot
side with the �gure showing many oscillations of both curves. The oscillations in the curves
were initially out of phase but then became in phase after a long time as the skew-symmetric
�ow �eld developed.
The �fth scenario began with a uniform temperature distribution on the same non-uniform

grid as for scenario 3 but used a much smaller time step with all of the other conditions

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1039–1044
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Figure 2. Variation of the Nusselt number for the symmetry-breaking scenario.

remaining the same as for scenario 3. The time step in scenario 5 allowed approximately 117
steps per oscillation while the time step in scenario 3 allowed approximately 34 steps per
cycle which would normally be considered su�cient.
The average parameter values listed in Table 1 for the non-uniform grid, scenario 3, varied

by about 2% from the values for the uniform grid, scenario 2, except for �P14 which was more
sensitive to the grid size. Most of the amplitudes for the non-uniform grid scenario varied by
less than 20% from the amplitudes for scenario 2 except for the pressure di�erences which
were, in general, more sensitive to the grid. The parameter values for the �ner grid, scenario
5, were then within 0.2% of the parameter values for scenario 3, again except for �P14. Most
of the amplitudes for the �ner grid scenario were within 2% of the amplitudes for scenario 3
again, except for the pressure di�erences.
The variations of the temperature at point 1 over one cycle are plotted in Figure 3 for

scenarios 2–5 in Table 1 that have oscillations. The data for scenario 4 are at t≈ 1100. The
various curves illustrate that the time-step size and the grid distribution had a relatively small
e�ect on the calculated temperatures.

CONCLUSIONS

The Galerkin form of the method of weighted residuals was used to solve the equations for
natural convection in a tall two-dimensional cavity using the Adams–Bashforth=trapezoidal
rule for the transient terms. Use of the Euler method for the transient term resulted in an
incorrect steady-state result as did use of insu�cient number of elements. For a 41× 201

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1039–1044
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Figure 3. Temperature variations over one cycle for point 1 (x=0:181; y=7:370).

non-uniform grid, changing the time step from 0.1 to 0.025 had only a small e�ect on the
results. More calculations are needed with more elements to determine if the grid distribution
provides su�ciently accurate results. A random initial temperature pro�le initially resulted in
a symmetry-breaking �ow �eld that eventually developed into the standard skew-symmetric
�ow.
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